Appearance
question:中文解读流程:import math import os from typing import List import torch from torch import nn from torch.nn.modules.transformer import _get_clones from lib.models.layers.head import build_box_head from lib.models.ceutrack.vit import vit_base_patch16_224 from lib.models.ceutrack.vit_ce import vit_large_patch16_224_ce, vit_base_patch16_224_ce from lib.utils.box_ops import box_xyxy_to_cxcywh class CEUTrack(nn.Module): """ This is the base class for hdetrack """ def __init__(self, transformer, box_head, aux_loss=False, head_type="CORNER"): """ Initializes the model. Parameters: transformer: torch module of the transformer architecture. aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. """ super().__init__() self.backbone = transformer self.box_head = box_head self.aux_loss = aux_loss self.head_type = head_type if head_type == "CORNER" or head_type == "CENTER": self.feat_sz_s = int(box_head.feat_sz) self.feat_len_s = int(box_head.feat_sz ** 2) if self.aux_loss: self.box_head = _get_clones(self.box_head, 6) def forward(self, event_template_img: torch.Tensor, # torch.Size([bs, 3, 128, 128]) event_search_img: torch.Tensor, # torch.Size([bs, 3, 256, 256]) # event_template: torch.Tensor, # torch.Size([bs, 1, 19, 1024]) # event_search: torch.Tensor, # torch.Size([bs, 1, 19, 4096]) x_template_img: torch.Tensor, x_search_img: torch.Tensor, ce_template_mask=None, ce_keep_rate=None, return_last_attn=False, ): # before feeding into backbone, we need to concat four vectors, or two two concat x, attn = self.backbone(z=x_template_img, x=x_search_img, ce_template_mask=ce_template_mask, ce_keep_rate=ce_keep_rate, return_last_attn=return_last_attn) event_x,event_attn = self.backbone(z=event_template_img, x=event_search_img, ce_template_mask=ce_template_mask, ce_keep_rate=ce_keep_rate, return_last_attn=return_last_attn) # Forward head feat_last = x if isinstance(x, list): feat_last = x[-1] out_x = self.forward_head(feat_last,attn,None) # 新增Forward头 event_feaat_last = event_x if isinstance(event_x,list): event_feat_last = event_x[-1] out_event = self.forward_head(event_feaat_last,event_attn, None) return out_x,out_event # 双分支输出头 def forward_head(self, cat_feature, gt_score_map=None): """ cat_feature: output embeddings of the backbone, it can be (HW1+HW2, B, C) or (HW2, B, C) """ event_search = cat_feature[:, -self.feat_len_s:] # [bs, 256, 768] event_search opt = (event_search.unsqueeze(-1)).permute((0, 3, 2, 1)).contiguous() bs, Nq, C, HW = opt.size() opt_feat = opt.view(-1, C, self.feat_sz_s, self.feat_sz_s) if self.head_type == "CORNER": # run the corner head pred_box, score_map = self.box_head(opt_feat, True) outputs_coord = box_xyxy_to_cxcywh(pred_box) outputs_coord_new = outputs_coord.view(bs, Nq, 4) out = {'pred_boxes': outputs_coord_new, 'score_map': score_map, } return out elif self.head_type == "CENTER": # run the center head score_map_ctr, bbox, size_map, offset_map = self.box_head(opt_feat, gt_score_map) # outputs_coord = box_xyxy_to_cxcywh(bbox) outputs_coord = bbox outputs_coord_new = outputs_coord.view(bs, Nq, 4) out = { 's_pred_boxes': outputs_coord_new, 's_score_map': score_map_ctr, 's_size_map': size_map, 's_offset_map': offset_map } return out else: raise NotImplementedError def build_ceutrack(cfg, training=True): current_dir = os.path.dirname(os.path.abspath(__file__)) # This is your Project Root pretrained_path = os.path.join(current_dir, 'pretrained_models') if cfg.MODEL.PRETRAIN_FILE and ('CEUTrack' not in cfg.MODEL.PRETRAIN_FILE) and training: pretrained = os.path.join(pretrained_path, cfg.MODEL.PRETRAIN_FILE) else: pretrained = '' if cfg.MODEL.BACKBONE.TYPE == 'vit_base_patch16_224': backbone_s = vit_base_patch16_224(pretrained, drop_path_rate=cfg.TRAIN.DROP_PATH_RATE) hidden_dim = backbone_s.embed_dim patch_start_index = 1 elif cfg.MODEL.BACKBONE.TYPE == 'vit_base_patch16_224_ce': backbone = vit_base_patch16_224_ce(pretrained, drop_path_rate=cfg.TRAIN.DROP_PATH_RATE, ce_loc=cfg.MODEL.BACKBONE.CE_LOC, ce_keep_ratio=cfg.MODEL.BACKBONE.CE_KEEP_RATIO, ) # hidden_dim = backbone_s.embed_dim*2 hidden_dim = backbone.embed_dim patch_start_index = 1 elif cfg.MODEL.BACKBONE.TYPE == 'vit_large_patch16_224_ce': backbone = vit_large_patch16_224_ce(pretrained, drop_path_rate=cfg.TRAIN.DROP_PATH_RATE, ce_loc=cfg.MODEL.BACKBONE.CE_LOC, ce_keep_ratio=cfg.MODEL.BACKBONE.CE_KEEP_RATIO, ) hidden_dim = backbone.embed_dim patch_start_index = 1 else: raise NotImplementedError backbone.finetune_track(cfg=cfg, patch_start_index=patch_start_index) box_head = build_box_head(cfg, hidden_dim) # cheakpoint=torch.load(os.path.join(pretrained_path, cfg.MODEL.PRETRAIN_FILE_T)) # box_head.load_state_dict(cheakpoint['net'],strict=False) model = CEUTrack( backbone, box_head, aux_loss=False, head_type=cfg.MODEL.HEAD.TYPE, ) return model if 'CEUTrack' in cfg.MODEL.PRETRAIN_FILE and training: checkpoint = torch.load(cfg.MODEL.PRETRAIN_FILE, map_location="cpu") missing_keys, unexpected_keys = model.load_state_dict(checkpoint["net"], strict=False) print('Load pretrained model from: ' + cfg.MODEL.PRETRAIN_FILE) return model
answer:这段代码是一个使用PyTorch框架实现的跟踪模型,模型名为CEUTrack。它利用Transformer作为其主干网络,并在此基础上构建了用于目标跟踪的特定处理头(head)。 # 主要组件和流程 1. **初始化 (`__init__` 方法)**: - **输入参数**: - `transformer`: Transformer主干网络。 - `box_head`: 生成预测框的网络头。 - `aux_loss`: 是否在每个decoder层使用辅助损失。 - `head_type`: 箱型头的类型,支持"CORNER"(角点)或"CENTER"(中心)。 - **初始化过程**中,首先保存了传入的参数和组件。若启用辅助损失,则对`box_head`进行克隆以创建多个相同的头部。 2. **前向传播 (`forward` 方法)**: - **输入**: - 事件模板图片和搜索图片(`event_template_img`和`event_search_img`),以及其他相关输入。 - **处理流程**: 1. 使用主干网络(Transformer)处理输入图像,提取特征和注意力。 2. 对于两种输入(事件模板和搜索图像),分别进行处理。 3. 使用`forward_head`方法对得到的特征进行后处理,生成最终的预测结果。 - 输出两个分支的结果。 3. **头部处理 (`forward_head` 方法)**: - 根据配置(`head_type`),决定是运行"角点"(CORNER)还是"中心"(CENTER)头部处理,生成不同格式的输出。 4. **构建模型 (`build_ceutrack` 函数)**: - 根据配置(从`cfg`中读取),选择Transformer的具体实现(如`vit_base_patch16_224`),构建主干网络。 - 加载预训练模型参数(如果有指定)。 - 创建`CEUTrack`实例,将已构建的主干网络和箱形头作为输入,以及根据配置设置其他参数(如`aux_loss`)。 - 如果在训练模式下且指定了预训练的模型权重,则尝试加载这些权重并打印相关信息。 此代码演示了如何在PyTorch中定义一个复杂的模型,尤其是在计算机视觉和视频分析领域的目标跟踪任务上。它展示了如何通过配置构建模型的灵活性,并解释了主要组件的功能和作用。此外,该代码还体现了如何利用Transformer模型的能力来处理视频跟踪任务,这是近年来机器学习和深度学习在视觉任务中的一种流行和有效方法。
question:一共几个预测头?
answer:在这段代码中,预测头(`box_head`)的数量取决于是否启用了辅助损失(由`aux_loss`参数控制)。 - 如果**未启用辅助损失**(`aux_loss=False`),则只有一个预测头被实例化并用于模型。 - 如果**启用了辅助损失**(`aux_loss=True`),则会克隆(复制)原有的预测头6次,意味着会有6个相同的预测头并行工作,每个解码器层对应一个预测头,用于计算解码器的每一层的损失。 因此,根据代码中`aux_loss`的设置,预测头的数量要么是**1个**,要么是**6个**。这里的设计意在通过多个预测头在不同解码层上捕获不同层级的特征,以提升模型的性能和泛化能力。
question:whats 107090462 in international system
answer:In the International System of Units (SI), which is used to express numbers, 107,090,462 would simply be written as 107,090,462 when used in a purely numerical context. However, if you're asking how to verbally express or write this number in a more standardized international format in English, it would be: one hundred seven million, ninety thousand, four hundred sixty-two. If you meant how to represent this number in a specific notation (for example, scientific notation), it would be written as 1.07090462 × 10^8.
question:Whats 81040213 in international system
answer:The number 81,040,213 written out in words following the International System of Units (SI), or more commonly in English, would be eighty-one million, forty thousand, two hundred thirteen.