Appearance
question:secondo me il problema è nei buffer. l'indicatore non ha dei buffer colorati definiti, quindi le frecce non si vedono?
answer:I buffer degli indicatori in MetaTrader 4 sono utilizzati per memorizzare e visualizzare vari tipi di dati, inclusi quelli che rappresentano le linee o gli oggetti grafici come frecce. Per le frecce, il buffer non deve contenere valori colorati, ma deve essere impostato per indicare specificamente dove deve apparire l'oggetto sul grafico. Se le frecce non vengono visualizzate, ciò è generalmente dovuto al fatto che non stiamo inserendo correttamente nel buffer i valori all'indice appropriato o che stiamo lavorando con i valori `EMPTY_VALUE` in modo errato. Ecco cosa fare per risolvere i problemi relativi ai buffer: 1. **Assicurarsi che i buffer siano di dimensione adeguata**: MT4 dimensionerà automaticamente i buffer quando usi `SetIndexBuffer`, ma è importante che non tenti di accedere agli indici del buffer che sono al di fuori del range dei dati disponibili. 2. **Impostare correttamente i valori sui buffer**: Devi assicurarti che per ogni indice del buffer che rappresenta una barra sul grafico ci sia un valore `EMPTY_VALUE` se non vuoi che un segnale venga visualizzato, o il prezzo a cui vuoi che la freccia sia visualizzata. Solo i valori validi (diversi da `EMPTY_VALUE`) disegneranno un oggetto grafico. 3. **Utilizzo del buffer calcolato correttamente**: Gli indici dei buffer dovrebbero essere calcolati a partire da `rates_total - 1` e andando a ritroso, poiché l'indice 0 rappresenta l'ultima barra storica del grafico. Tuttavia, poiché abbiamo impostato `ArraySetAsSeries(BuyArrowBuffer, true);` e `ArraySetAsSeries(SellArrowBuffer, true);`, ora la barra più recente sarà `i = 0` e andrà a ritroso fino a `rates_total - 1`. 4. **Controllare che le frecce siano impostate su simboli validi**: Utilizzando i numeri di Wingdings, `233` corrisponde a una freccia diretta verso l'alto e `234` a una freccia diretta verso il basso. Verifica che stai utilizzando i simboli giusti. 5. **Posizione della Freccia**: Le frequenze devono essere posizionate a una distanza visibile dal prezzo, quindi controlla di non aver posizionato la freccia troppo lontana dal prezzo corrente. Ricorda, non è necessario avere buffer colorati per vedere le frecce. Tuttavia, devi impostare i buffer correttamente come descritto. Se stai ancora avendo problemi a visualizzare le frecce, potrebbe essere utile inserire dei messaggi di dubug tramite la funzione `Print` per vedere se gli indici ed i valori dei buffer sono adeguatamente impostati quando l'indicatore calcola un segnale di acquisto o vendita.
question://— input parameters input int AroonPeriod = 14; input double Filter = 50.0; //— indicator buffers double BuyArrowBuffer[]; double SellArrowBuffer[]; //±-----------------------------------------------------------------+ //| Indicator initialization function | //±-----------------------------------------------------------------+ int OnInit() { SetIndexBuffer(0, BuyArrowBuffer, INDICATOR_DATA); SetIndexBuffer(1, SellArrowBuffer, INDICATOR_DATA); SetIndexArrow(0, 233); // Freccia in su (simbolo Wingdings) SetIndexArrow(1, 234); // Freccia in giù (simbolo Wingdings) ArraySetAsSeries(BuyArrowBuffer, true); ArraySetAsSeries(SellArrowBuffer, true); IndicatorShortName("Aroon Buy/Sell Indicator"); return(INIT_SUCCEEDED); } //±-----------------------------------------------------------------+ //| Custom indicator iteration function | //±-----------------------------------------------------------------+ int OnCalculate(const int rates_total, const int prev_calculated, const datetime &time[], const double &open[], const double &high[], const double &low[], const double &close[], const long &tick_volume[], const long &volume[], const int &spread[]) { //— check for at least AroonPeriod+1 bars on the chart if(rates_total < AroonPeriod+1) return(0); //— Set everything to EMPTY_VALUE by default ArrayInitialize(BuyArrowBuffer, EMPTY_VALUE); ArrayInitialize(SellArrowBuffer, EMPTY_VALUE); //— start calculation from one period after the largest period used for Aroon (to ensure data availability) int start = (prev_calculated> AroonPeriod+1) ? prev_calculated-1 : AroonPeriod+1; //— main calculation loop for(int i=start; i<rates_total; i++) { // Calculate Aroon values double AroonUp = 100 * (AroonPeriod - (i - iHighest(NULL, 0, MODE_HIGH, AroonPeriod, i))) / AroonPeriod; double AroonDn = 100 * (AroonPeriod - (i - iLowest(NULL, 0, MODE_LOW, AroonPeriod, i))) / AroonPeriod; double AroonUp2 = 100 * (AroonPeriod - (i+1 - iHighest(NULL, 0, MODE_HIGH, AroonPeriod, i+1))) / AroonPeriod; double AroonDn2 = 100 * (AroonPeriod - (i+1 - iLowest(NULL, 0, MODE_LOW, AroonPeriod, i+1))) / AroonPeriod; // Detect signals and set arrows if(AroonUp - AroonDn > Filter && AroonUp2 - AroonDn2 < Filter) { // Buy signal, place arrow below the low of the signal bar BuyArrowBuffer[i] = low[i] - (4 * _Point); } if(AroonDn - AroonUp > Filter && AroonDn2 - AroonUp2 < Filter) { // Sell signal, place arrow above the high of the signal bar SellArrowBuffer[i] = high[i] + (4 * _Point); } } //— return value of prev_calculated for next call return(rates_total); } //±-----------------------------------------------------------------+ i buffer sono correttamente impostati? freccia in su verde, freccia in giù rossa
answer:I buffer delle frecce nel tuo codice sembrano impostati correttamente per memorizzare gli indici dei punti in cui vuoi che le frecce vengano disegnate. Tuttavia, per quanto riguarda i colori delle frecce (per esempio verde per le frecce in su e rosso per le frecce in giù), non hai specificato alcun colore in quanto in MetaTrader 4, le frecce Wingdings sono sempre disegnate nello stesso colore. Se desideri visualizzare frecce di diversi colori, purtroppo non è possibile farlo direttamente usando i codici semplifici Wingdings (233 e 234) dei buffer di indicatori in MetaTrader 4. Le frecce saranno tutte dello stesso colore, normalmente del colore del pennello del buffer più recentemente cambiato o del colore di default per gli oggetti. Se desideri assolutamente avere frecce di colori diversi dovrai utilizzare gli oggetti grafici programmabili invece dei buffer di indicatori, che però è una tecnica un po’ più avanzata e comporta l'uso delle funzioni di programmazione degli oggetti, come `ObjectCreate()` e `ObjectSetInteger()` per definire il tipo e il colore dell'oggetto. Ecco un semplice esempio su come creare una freccia verde rivolta verso l'alto e una rossa rivolta verso il basso utilizzando oggetti grafici: ```mql4 //--- Creazione di una freccia verde verso l'alto. void CreateBuyArrow(int index, double price) { string name = "BuyArrow_" + IntegerToString(index); if(!ObjectCreate(0, name, OBJ_ARROW, 0, Time[index], price)) Print("Errore nella creazione dell'oggetto BuyArrow!"); else ObjectSetInteger(0, name, OBJPROP_COLOR, clrGreen); // Imposta il colore verde } //--- Creazione di una freccia rossa verso il basso. void CreateSellArrow(int index, double price) { string name = "SellArrow_" + IntegerToString(index); if(!ObjectCreate(0, name, OBJ_ARROW, 0, Time[index], price)) Print("Errore nella creazione dell'oggetto SellArrow!"); else ObjectSetInteger(0, name, OBJPROP_COLOR, clrRed); // Imposta il colore rosso } ``` Tieni presente che creare e gestire oggetti grafici per ogni segnale può essere più impegnativo in termini di risorse e può complicare la logica di pulizia, in quanto dovrai gestire attivamente l'esistenza di questi oggetti sul grafico, inclusa la loro creazione, aggiornamento e cancellazione quando non sono più necessari.
question:Mention an openstax chapter and its section number that lines with the following content: Table of Contents: Preface Chapter 1 Essential Ideas Introduction 1.1 Chemistry in Context 1.2 Phases and Classification of Matter 1.3 Physical and Chemical Properties 1.4 Measurements 1.5 Measurement Uncertainty, Accuracy, and Precision 1.6 Mathematical Treatment of Measurement Results Key Terms Key Equations Summary Exercises Chapter 2 Atoms, Molecules, and Ions Introduction 2.1 Early Ideas in Atomic Theory 2.2 Evolution of Atomic Theory 2.3 Atomic Structure and Symbolism 2.4 Chemical Formulas 2.5 The Periodic Table 2.6 Ionic and Molecular Compounds 2.7 Chemical Nomenclature Key Terms Key Equations Summary Exercises Chapter 3 Composition of Substances and Solutions Introduction 3.1 Formula Mass and the Mole Concept 3.2 Determining Empirical and Molecular Formulas 3.3 Molarity 3.4 Other Units for Solution Concentrations Key Terms Key Equations Summary Exercises Chapter 4 Stoichiometry of Chemical Reactions Introduction 4.1 Writing and Balancing Chemical Equations 4.2 Classifying Chemical Reactions 4.3 Reaction Stoichiometry 4.4 Reaction Yields 4.5 Quantitative Chemical Analysis Key Terms Key Equations Summary Exercises Chapter 5 Thermochemistry Introduction 5.1 Energy Basics 5.2 Calorimetry 5.3 Enthalpy Key Terms Key Equations Summary Exercises Chapter 6 Electronic Structure and Periodic Properties of Elements Introduction 6.1 Electromagnetic Energy 6.2 The Bohr Model 6.3 Development of Quantum Theory 6.4 Electronic Structure of Atoms (Electron Configurations) 6.5 Periodic Variations in Element Properties Key Terms Key Equations Summary Exercises Chapter 7 Chemical Bonding and Molecular Geometry Introduction 7.1 Ionic Bonding 7.2 Covalent Bonding 7.3 Lewis Symbols and Structures 7.4 Formal Charges and Resonance 7.5 Strengths of Ionic and Covalent Bonds 7.6 Molecular Structure and Polarity Key Terms Key Equations Summary Exercises Chapter 8 Advanced Theories of Covalent Bonding Introduction 8.1 Valence Bond Theory 8.2 Hybrid Atomic Orbitals 8.3 Multiple Bonds 8.4 Molecular Orbital Theory Key Terms Key Equations Summary Exercises Chapter 9 Gases Introduction 9.1 Gas Pressure 9.2 Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law 9.3 Stoichiometry of Gaseous Substances, Mixtures, and Reactions 9.4 Effusion and Diffusion of Gases 9.5 The Kinetic-Molecular Theory 9.6 Non-Ideal Gas Behavior Key Terms Key Equations Summary Exercises Chapter 10 Liquids and Solids Introduction 10.1 Intermolecular Forces 10.2 Properties of Liquids 10.3 Phase Transitions 10.4 Phase Diagrams 10.5 The Solid State of Matter 10.6 Lattice Structures in Crystalline Solids Key Terms Key Equations Summary Exercises Chapter 11 Solutions and Colloids Introduction 11.1 The Dissolution Process 11.2 Electrolytes 11.3 Solubility 11.4 Colligative Properties 11.5 Colloids Key Terms Key Equations Summary Exercises Chapter 12 Kinetics Introduction 12.1 Chemical Reaction Rates 12.2 Factors Affecting Reaction Rates 12.3 Rate Laws 12.4 Integrated Rate Laws 12.5 Collision Theory 12.6 Reaction Mechanisms 12.7 Catalysis Key Terms Key Equations Summary Exercises Chapter 13 Fundamental Equilibrium Concepts Introduction 13.1 Chemical Equilibria 13.2 Equilibrium Constants 13.3 Shifting Equilibria: Le Châtelier’s Principle 13.4 Equilibrium Calculations Key Terms Key Equations Summary Exercises Chapter 14 Acid-Base Equilibria Introduction 14.1 Brønsted-Lowry Acids and Bases 14.2 pH and pOH 14.3 Relative Strengths of Acids and Bases 14.4 Hydrolysis of Salts 14.5 Polyprotic Acids 14.6 Buffers 14.7 Acid-Base Titrations Key Terms Key Equations Summary Exercises Chapter 15 Equilibria of Other Reaction Classes Introduction 15.1 Precipitation and Dissolution 15.2 Lewis Acids and Bases 15.3 Coupled Equilibria Key Terms Key Equations Summary Exercises Chapter 16 Thermodynamics Introduction 16.1 Spontaneity 16.2 Entropy 16.3 The Second and Third Laws of Thermodynamics 16.4 Free Energy Key Terms Key Equations Summary Exercises Chapter 17 Electrochemistry Introduction 17.1 Review of Redox Chemistry 17.2 Galvanic Cells 17.3 Electrode and Cell Potentials 17.4 Potential, Free Energy, and Equilibrium 17.5 Batteries and Fuel Cells 17.6 Corrosion 17.7 Electrolysis Key Terms Key Equations Summary Exercises Chapter 18 Representative Metals, Metalloids, and Nonmetals Introduction 18.1 Periodicity 18.2 Occurrence and Preparation of the Representative Metals 18.3 Structure and General Properties of the Metalloids 18.4 Structure and General Properties of the Nonmetals 18.5 Occurrence, Preparation, and Compounds of Hydrogen 18.6 Occurrence, Preparation, and Properties of Carbonates 18.7 Occurrence, Preparation, and Properties of Nitrogen 18.8 Occurrence, Preparation, and Properties of Phosphorus 18.9 Occurrence, Preparation, and Compounds of Oxygen 18.10 Occurrence, Preparation, and Properties of Sulfur 18.11 Occurrence, Preparation, and Properties of Halogens 18.12 Occurrence, Preparation, and Properties of the Noble Gases Key Terms Summary Exercises Chapter 19 Transition Metals and Coordination Chemistry Introduction 19.1 Occurrence, Preparation, and Properties of Transition Metals and Their Compounds 19.2 Coordination Chemistry of Transition Metals 19.3 Spectroscopic and Magnetic Properties of Coordination Compounds Key Terms Summary Exercises Chapter 20 Organic Chemistry Introduction 20.1 Hydrocarbons 20.2 Alcohols and Ethers 20.3 Aldehydes, Ketones, Carboxylic Acids, and Esters 20.4 Amines and Amides Key Terms Summary Exercises Chapter 21 Nuclear Chemistry Introduction 21.1 Nuclear Structure and Stability 21.2 Nuclear Equations 21.3 Radioactive Decay 21.4 Transmutation and Nuclear Energy 21.5 Uses of Radioisotopes 21.6 Biological Effects of Radiation Key Terms Key Equations Summary Exercises Content: SPQ-1.A.1 One cannot count particles directly while performing laboratory work. Thus, there must be a connection between the masses of substances reacting and the actual number of particles undergoing chemical changes. SPQ-1.A.2 Avogadro’s number (N = 6.022 × 1023 mol−1 A ) provides the connection between the number of moles in a pure sample of a substance and the number of constituent particles (or formula units) of that substance. SPQ-1.A.3 Expressing the mass of an individual atom or molecule in atomic mass units (amu) is useful because the average mass in amu of one particle (atom or molecule) or formula unit of a substance will always be numerically equal to the molar mass of that substance in grams. Thus, there is a quantitative connection between the mass of a substance and the number of particles that the substance contains. EQN: n = m/M SPQ-1.B.1 The mass spectrum of a sample containing a single element can be used to determine the identity of the isotopes of that element and the relative abundance of each isotope in nature. SPQ-1.B.2 The average atomic mass of an element can be estimated from the weighted average of the isotopic masses using the mass of each isotope and its relative abundance. X INTERPRETING MASS SPECTRA Interpreting mass spectra of samples containing multiple elements or peaks arising from species other than singly charged monatomic ions will not be assessed on the AP Exam. SPQ-2.A.1 Some pure substances are composed of individual molecules, while others consist of atoms or ions held together in fixed proportions as described by a formula unit. SPQ-2.A.2 According to the law of definite proportions, the ratio of the masses of the constituent elements in any pure sample of that compound is always the same. SPQ-2.A.3 The chemical formula that lists the lowest whole number ratio of atoms of the elements in a compound is the empirical formula. SPQ-2.B.1 While pure substances contain molecules or formula units of a single type, mixtures contain molecules or formula units of two or more types, whose relative proportions can vary. SPQ-2.B.2 Elemental analysis can be used to determine the relative numbers of atoms in a substance and to determine its purity SAP-1.A.1 The atom is composed of negatively charged electrons and a positively charged nucleus that is made of protons and neutrons. SAP-1.A.2 Coulomb’s law is used to calculate the force between two charged particles. EQN: Fcoulombic ∝ q1 q2 r2 SAP-1.A.3 In atoms and ions, the electrons can be thought of as being in “shells (energy levels)” and “subshells (sublevels),” as described by the electron configuration. Inner electrons are called core electrons, and outer electrons are called valence electrons. The electron configuration is explained by quantum mechanics, as delineated in the Aufbau principle and exemplified in the periodic table of the elements. X THE ASSIGNMENT OF QUANTUM NUMBERS TO ELECTRONS IN SUBSHELLS OF AN ATOM WILL NOT BE ASSESSED ON THE AP EXAM. Rationale: Assignment of quantum numbers to electrons in specific subshells does not increase students’ understanding of the structure of the atom. SAP-1.A.4 The relative energy required to remove an electron from different subshells of an atom or ion or from the same subshell in different atoms or ions (ionization energy) can be estimated through a qualitative application of Coulomb’s law. This energy is related to the distance from the nucleus and the effective (shield) charge of the nucleus SAP-1.B.1 The energies of the electrons in a given shell can be measured experimentally with photoelectron spectroscopy (PES). The position of each peak in the PES spectrum is related to the energy required to remove an electron from the corresponding subshell, and the height of each peak is (ideally) proportional to the number of electrons in that subshell SAP-2.A.1 The organization of the periodic table is based on the recurring properties of the elements and explained by the pattern of electron configurations and the presence of completely or partially filled shells (and subshells) of electrons in atoms. X WRITING THE ELECTRON CONFIGURATION OF ELEMENTS THAT ARE EXCEPTIONS TO THE AUFBAU PRINCIPLE WILL NOT BE ASSESSED ON THE AP EXAM. Rationale: The mere rote recall of the exceptions does not match the goals of the curriculum revision. SAP-2.A.2 Trends in atomic properties within the periodic table (periodicity) can be qualitatively understood through the position of the element in the periodic table, Coulomb’s law, the shell model, and the concept of shielding/effective nuclear charge. These properties include: a. Ionization energy b. Atomic and ionic radii c. Electron affinity d. Electronegativity. SAP-2.A.3 The periodicity (in SAP-2.A.2) is useful to predict /estimate values of properties in the absence of data. SAP-2.B.1 The likelihood that two elements will form a chemical bond is determined by the interactions between the valence electrons and nuclei of elements. SAP-2.B.2 Elements in the same column of the periodic table tend to form analogous compounds. SAP-2.B.3 Typical charges of atoms in ionic compounds are governed by their location on the periodic table and the number of valence electrons.
answer:The content you've provided appears to discuss atomic and molecular mass, Avogadro's number, and the connection between the mass of a substance and the number of particles it contains. This content most closely aligns with the topics covered in Chapter 3 of the OpenStax Chemistry textbook, specifically: - **Section 3.1 Formula Mass and the Mole Concept**: This section would cover Avogadro's number and the relationship between the number of moles and the number of particles. - **Section 3.2 Determining Empirical and Molecular Formulas**: This involves determining the lowest whole number ratio of elements in a compound (which is related to the content you provided) and the actual number of atoms of each element in a molecule of the substance. Among the concepts you've listed, SPQ-1.A.1 to SPQ-1.A.3 and SPQ-2.A.3 directly relate to the content of these sections as they involve the mole concept, Avogadro's number, and empirical formulas. However, your content also contains references to topics such as mass spectroscopy, Coulomb's law, electron configurations, periodic table organization, and trends in atomic properties which might span across multiple chapters and sections in the OpenStax Chemistry textbook: - **Mass spectroscopy**: Typically found in sections discussing atomic theory and structure, which might be in Chapter 2 or in a specific section discussing instrumental techniques for determining atomic and molecular mass. - **Coulomb’s law and electron configurations**: These are generally discussed in chapters related to atomic structure and periodic trends, for instance, in Chapter 6 (Electronic Structure and Periodic Properties of Elements). - **Periodicity in properties (ionization energy, radii, etc.) and trends**: These are usually covered extensively in sections dedicated to periodic trends within a chapter on the periodic table, which would be Chapter 6 in the OpenStax Chemistry textbook. To identify the exact section numbers, you would need to refer to the corresponding OpenStax Chemistry textbook. Given that the exact editions and versions of textbooks can be revised, it's important to match the content with the specific textbook edition you are using.
question:ما افضل اداه لتصميم متجر الكتروني
answer:هناك العديد من الأدوات المتاحة لتصميم متجر إلكتروني، والأفضلية تعتمد على احتياجاتك ومستوى خبرتك في التصميم والتطوير. إليك بعض الأدوات المشهورة لتصميم متجر إلكتروني: 1- WooCommerce: إضافة قوية لنظام إدارة المحتوى WordPress، توفر وظائف متجر إلكتروني قوية ومرنة. 2- Shopify: منصة تجارة إلكترونية شهيرة وموثوقة، توفر تصاميم جاهزة وأدوات سهلة الاستخدام. 3- Magento: نظام متكامل لإنشاء متاجر إلكترونية قوية ومخصصة، يتطلب مستوى متقدم من المهارات التقنية. 4- BigCommerce: توفر واجهة سهلة الاستخدام وأدوات تصميم قوية لإنشاء متاجر إلكترونية احترافية. 5- OpenCart: منصة مجانية ومفتوحة المصدر، توفر تصاميم جاهزة ومجموعة كبيرة من الإضافات. قم بأبحاث إضافية حول هذه الأدوات واختر تلك التي تناسب احتياجاتك ومهاراتك الفردية.